Новые данные ATLAS по хиггсовскому бозону: интрига сохраняется
14 сентября 2015
Коллаборация ATLAS обновила данные по распаду хиггсовского бозона на два фотона и на пару Z-бозонов. Подтверждается самый громкий результат LHC — существенное превышение двухфотонного распада по сравнению со Стандартной моделью. Обнаружились также нестыковки в массе бозона Хиггса, но они объясняются, по-видимому, статистической флуктуацией и вовсе не свидетельствуют о том, что коллайдер «видит» два бозона Хиггса.
Изучение хиггсовского бозона: краткая предыстория
4 июля 2012 года на специальном семинаре в ЦЕРНе было объявлено об открытии хиггсовского бозона на Большом адронном коллайдере. Эта частица — отголосок нарушения электрослабой симметрии — кардинального преобразования нашей Вселенной, случившегося в эпоху ее «горячей юности» — была предсказана теоретиками еще полвека назад. Но только сейчас, спустя десятилетия поисков в самых разных экспериментах, ее существование было надежно установлено. С полным правом можно сказать, что в физике частиц завершилась эра поисков бозона Хиггса и началась эпоха его всестороннего изучения.
Изучать хиггсовский бозон нужно для того, чтобы выяснить, из какой именно разновидности хиггсовского механизма он возникает. А это, в свою очередь, должно рассказать о том, каково глубинное устройство нашего мира, какая именно из многочисленных гипотез Новой физики имеет отношение к реальности. Именно поэтому обнаружение бозона Хиггса является не концом, а только началом научной программы по его исследованию.
Вот основные вопросы, на которые физики хотят получить ответы в экспериментах на Большом адронном коллайдере:
сколько существует типов хиггсовского бозона и каковы их характеристики (масса, заряд, спин и т. д.)?
на что они распадаются и с какой вероятностью?
если LHC видит только один хиггсовский бозон, то отличаются ли его свойства от предсказаний Стандартной модели?
По состоянию на лето 2012 года сложилась такая картина.
Была достоверно обнаружена частица с массой в районе 125–126 ГэВ, свойства которой очень напоминали свойства хиггсовского бозона. Она находится примерно в том диапазоне масс, на который указывали более ранние косвенные данные, и распадается на те самые наборы частиц («каналы распада»), которые ожидаются от более или менее стандартного хиггсовского бозона. По этой причине подавляющее большинство физиков с самого начала было уверено в том, что это именно бозон Хиггса. Дополнительных хиггсовских бозонов пока не видно.
Хиггсовский бозон проявлял себя наиболее четко в двух самых чистых каналах распада: это распад на два фотона и распад на два Z-бозона с их последующим распадом на четыре лептона (электрона или мюона). Поиски велись еще в трех каналах распада, но из-за больших статистических погрешностей и сильного фона заметить проявления бозона Хиггса в них не удавалось.
Самый громкий результат состоял в том, что измеренная вероятность распада на два фотона оказалась в полтора-два раза больше, чем предсказывалось Стандартной моделью. Это превышение было синхронно замечено в двух главных детекторах, работающих на коллайдере, — CMS и ATLAS. Теоретики сразу же накинулись на этот результат, предлагая десятки разных объяснений в рамках тех или иных моделей Новой физики. Экспериментаторы охлаждали их пыл, терпеливо повторяя, что отличие от Стандартной модели пока не слишком статистически значимо, так что делать выводы пока рано.
В других каналах распада тоже наблюдались интересные эффекты; например, распад на два тау-лептона был попросту не виден. Однако из-за еще больших погрешностей данных каких-то далеко идущих выводов тут пока не делалось.
Наметилось некоторое расхождение между экспериментами ATLAS и CMS относительно общей интенсивности рождения и распада хиггсовского бозона. ATLAS в среднем давал превышение над ожиданиями Стандартной модели, а в данных CMS, наоборот, наблюдался нехватка хиггсовских бозонов. Опять же, пока статистика невелика, это расхождение не вызывает беспокойства и вполне может быть списано на статистическую флуктуацию.
Летние результаты были основаны на статистике, накопленной за 2011 год (интегральная светимость примерно 5 fb–1 на энергии протонных столкновений 7 ТэВ) и за первые месяцы работы 2012 года (примерно 6 fb–1 на энергии 8 ТэВ). Однако в дальнейшем коллайдер набирал статистику всё более ударными темпами: за лето и осень было накоплено еще примерно 15 fb–1. Поэтому ожидалось, что обе коллаборации — CMS и ATLAS — ближе к концу года выступят с обновленными данными. Если в них отклонения от Стандартной модели будут по-прежнему велики, а погрешности уменьшатся, то это будет сильным свидетельством в пользу того, что Новая физика наконец-то найдена.
В ноябре в Японии прошел крупный симпозиум по физике на адронных коллайдерах. Оба эксперимента представили тамобновленные данные по хиггсовкому бозону, однако самые интересные каналы распада (два фотона и в случае ATLAS еще и ZZ) обновлены не были. Можно было предположить, что коллаборации либо обнаружили что-то новое и интересное, либо столкнулись с какими-то трудностями. Так или иначе, исследовательские группы решили не торопиться и лишний раз себя перепроверить.
Новые данные ATLAS
13 декабря, после примерно месячного ожидания, были обнародованы новые результаты коллаборации ATLAS на статистике 13 fb–1 (плюс данные 2011 года). Доклады представителей этого эксперимента прозвучали в рамках Мини-программы по идентификации бозона Хиггса в Институте теоретической физики им. Кавли, а также на традиционномдекабрьском семинаре в ЦЕРНе, на котором подводились итоги работы LHC в прошедшем году. На странице научных результатов ATLAS также появились технические статьи с подробными графиками и описанием.
Новые результаты, касающиеся распада на два фотона (H → γγ), таковы:
Хиггсовский сигнал проявляется всё четче и четче. На рис. 2, слева, показано распределение двухфотонных пар по инвариантной массе. Отчетливо видно, что на фоне плавного распределения (то есть рождения двух фотонов высокой энергии без участия бозона Хиггса) виден небольшой бугорок в районе 126 ГэВ. Он отвечает тем дополнительным случаям рождения двух фотонов, которые возникли из распада бозона Хиггса. Сравните этот график с аналогичным распределением полугодичной давности (рис. 2, слева, в июльской новости).
Статистическая значимость этого пика составляет 6,1 стандартных отклонений. Таким образом, даже если бы у нас не было данных по другим каналам распада, один лишь этот канал был бы достаточен для объявлении об открытии бозона Хиггса.
На радость физикам, интенсивность хиггсовского сигнала остается высокой, существенно превышающей ожидание Стандартной модели. Отношение реальных данных к ожидаемым составляет в этом канале μγγ = 1,8 ± 0,3+0,29–0,21(первая погрешность статистическая, вторая — систематическая). Отличие от единицы (то есть от Стандартной модели) составляет примерно 2 стандартных отклонения. Это, конечно, еще не слишком впечатляющий результат, но хорошо уже то, что по мере накопления данных это число не флуктуирует вокруг единицы, а систематически остается большим